original papers
Smulski S., Pszczola M., Stachowiak M., Bilinska A., Szczerbal I., (2023), Droplet digital PCR quantification of selected microRNAs in raw mastitic cowÂ’s milk from the west of Poland
, Journal of Veterinary Research, 67: 583-591. (IF’ 2022=1,8; 5-years IF’ 2022=2,2) doi: 10.2478/jvetres-2023-0062
Wozniak J., Loba W., Iskrzak P., Pszczola M., Wojtczak J., Switonski M., Nowacka-Woszuk J., (2023), A confirmed association between DNA variants in CAPN9, OSM, and ITGAM candidate genes and the risk of umbilical hernia in pigs
, Animal Genetics, 54(3), 307-314 (IF'2021=2.884 ; 5-years IF'2021=3.058)
Bilinska A., Pszczola M., Stachowiak M., Stachecka J., Garbacz F., Aksoy M.O., Szczerbal I., (2023), Droplet Digital PCR Quantification of Selected Intracellular and Extracellular microRNAs Reveals Changes in Their Expression Pattern during Porcine In Vitro Adipogenesis
, Genes, 14(3), 683 (IF'2021=4.141 ; 5-years IF'2021=4.474)
Uglis J., Jeczmyk A., Zawadka J., Wojcieszak-Zbierska MM., Pszczola M., (2022), Impact of the COVID-19 pandemic on tourist plans: a case study from Poland
, Current Issues in Tourism, vol. 25 (no. 3), s. 405-420, (IF'2020=7,578)
Sommermeyer H., Bernatek M., Pszczola M., Krauss H., Piatek J., (2022), Supporting the diagnosis of infantile colic by a point of care measurement of fecal calprotectin.
, Frontiers in Pediatrics, 10:978545 (IF'2021 = 3,418, 5-years IF'2021=3,153)
Negussie E., de Haas Y., González-Recio O., Garcia-Rodriguez A., Kreuzer M., Kuhla B., Battagin M., Bayat A., Garnsworthy PC., Boland T., Gengler N., Lassen J., Peiren N., Pszczola M., Schwarm A., Soyeurt H., Vanlierde A., Yan T., Biscarini F., (2022), Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle.
, Journal of Dairy Sciences, 105, 5124-5140, (IF'2021 = 4,225; 5-year IF'2021 = 4,987)
Mikula R., Pszczola M., Rzewuska K., Mucha S., Nowak W., Strabel T., (2022), The Effect of Rumination Time on Milk Performance and Methane Emission of Dairy Cows Fed Partial Mixed Ration Based on Maize Silage.
, Animals, 12(1), 50 (IF'2020 = 2,752; 5-years IF'2020=2,942)
Uglis J., Jeczmyk A., Zawadka J., Wojcieszak-Zbierska M., Pszczola M., (2021), Impact of the COVID-19 pandemic on tourist plans: a case study from Poland.
, Current Issues in Tourism, DOI: 10.1080/13683500.2021.1960803 (IF'2020=7,430 ;5-year IF'2020=7,811)
Sell-Kubiak E., Knoll Egbert F., Mulder Herman A., Pszczola M., (2021), Unraveling the actual background of second litter syndrome in pigs: based on Large White data
, Animal, vol. 15 (iss. 2), art. no. 100033 (IF'2020=3,24; 5-years IF'2020=3,223)
Madeja Z.E., Podralska M., Nadel A., Pszczola M., Pawlak P., Rozwadowska N., (2021), Mitochondria content and activity are crucial parameters for bull sperm quality evaluation.
, Antioxidants, 10(8), 1204;(IF'2020 = 6,312; 5-year IF'2020 = 6,646)
Sommermeyer H., Krauss H., Checinska-Maciejewska Z., Pszczola M., Piatek J. , (2020), Infantile Colic—The Perspective of German and Polish Pediatricians in 2020.
, International Journal of Environmental Research and Public Health 17(19):Â 7011., (IF'2020 = 3,390; 5-years IF'2020 = 3,789)
Majewski M., Lukomska A., Wilczynski J., Wystalska D., Racewicz P., Nowacka-Woszuk J., Pszczola M., Anusz K., (2020), Colistin resistance of non-pathogenic strains of Escherichia coli occurring as natural intestinal flora in broiler chickens treated and not treated with colistin sulphate.
, Journal of Veterinary Research, 4:399-405. (IF'2020=1,744; 5-years IF'2020=1,838)
Aleksiewicz R., Lutniski K., Kirstein J., Kielbowicz M., Pszczola M., (2020), Innovative triangular cutting guide in cranial tibial wedge osteotomy in dogs with a cranial cruciate ligament rupture.
, Medycyna Weterynaryjna 2020, 76 (7), 406-410, (IF'2020=0,383; 5-year IF'2020=0,369).
Sypniewski M., Strabel T., Cieslak A., Szumacher-Strabel M., Pszczola M., (2019), Technical note: Interchangeability and comparison of methane measurements in dairy cows with 2 noninvasive infrared systems.
, Journal of Dairy Science, 102: 9512–9517 (IF'2019 = 3.333; 5-years IF'2019 = 3.432)
Szalanski M., Kristensen T., Difford G., Lassen J., Buitenhuis A.J., Pszczola M., Løvendahl P., (2019), Enteric methane emission from Jersey cows during the spring transition from indoor feeding to grazing
, Journal of Dairy Science, 102:6319–6329 (IF'2019 = 3.333; 5-years IF'2019 = 3.432)
Pszczola M., Calus M.P.L., Strabel T., (2019), Short communication: Genetic correlations between methane and milk production, conformation, and functional traits
, Journal of Dairy Science, 102: 5342-5346(IF'2019 = 3.333; 5-years IF'2019 = 3.432)
Garnsworthy P.C., Diford G.F., Bell M.J., Bayat A.R.,Huhtanen P., Kuhla B., Lassen J., Peiren N., Pszczola M., Sorg D., Visker M.H.P.W., Yan T., (2019), Comparison of Methods to Measure Methane for Use in Genetic Evaluation of Dairy Cattle
, Animals, Animals, 9, 837(IF`2019 = 1.654)
Pszczola M., Strabel T., Mucha S., Sell-Kubiak E.
, (2018), Genome-wide association identifies methane production level relation to genetic control of digestive tract development in dairy cows
, Scientific Reports
, 8:15164 (IF'2017=4.122; 5-years IF'2017=4.609)
Sorg D., Difford G. F., Mühlbach S., Kuhla B., Swalve H. H., Lassen J., Strabel T., Pszczola M., (2018), Comparison of a laser methane detector with the GreenFeed and two breath analysers for on-farm measurements of methane emissions from dairy cows
, Computers and Electronics in Agriculture, 153: 285-294 (IF'2017=2.427; 5-years IF'2017=2.761)
Pszczola M., Szalanski M., Rzewuska K., Strabel T.
, (2018), Short communication: Improving repeatability of cows’ body weight recorded by an automated milking system
, Livestock Science
, 214: 35-74 (IF'2017=1.204; 5-years IF'2017=1.613)
Pszczola M., Rzewuska K., Mucha S. and Strabel T.
, (2017), Heritability of methane emissions from dairy cows over a lactation measured on commercial farms
, Journal of Animal Science
, 95(11): 4813-4819 (IF'2017=1.711; 5-years IF'2017=2.141)
Warzych E., Pawlak P., Pszczola M., Cieslak A., Lechniak D.
, (2017), Prepubertal heifers versus cows - The differences in the follicular environment
, Theriogenology, 87: 36-47. (IF'2017=2.136; 5-years IF'2017=2.209).
Pszczola M. and Calus M.P.L.
, (2016), Updating the reference population to achieve constant genomic prediction reliability across generations
, Animal
, 10(6): 1018-1024. (IF'2016=1.921; 5-years IF'2016=2.201).
Dadousis C., Veerkamp F. R., Heringstad B., Pszczola M., Calus M.
, (2014), A comparison of principal component regression and genomic REML for genomic prediction across populations.
, Genetics Selection Evolution
, 46: 60 (IF'2014= 3,821; 5-years IF'2014=4.404).
Pszczola M., Veerkamp R.F., de Haas Y., Wall E., Strabel T., Calus M.P.
, (2013), Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population.
, Animal
, 7(11):1759-1768, (IF'2013= 1,784; 5-years IF'2013=1,922)
Calus M.P.L., de Haas Y., Pszczola M., Veerkamp R. F.
, (2013), Predicted accuracy of and response to genomic selection for new traits in dairy cattle.
, Animal
, 7:2 183-191, (IF'2013=1.784; 5-years IF'2013=1,922)
Pszczola M., Strabel T., van Arendonk J.A.M., Calus M.P.L.
, (2012), The impact of genotyping different groups of animals on accuracy when moving from traditional to genomic selection.
, Journal of Dairy Science
, 95(9):5412-5421 (IF'2012=2,566; 5-years IF'2012=3,009)
Zeng J., Pszczola M., Wolc A., Strabel T., Fernando R. L., Garrick D. J., Dekkers J.C.M.
, (2012), Genotmic breding value prediction and QTL mapping of QTLMAS2011 data using bayesian and GBLUP methods.
, BMC Proceedings 2012
, 6(Suppl 2): S7
Pszczola M., Strabel T., Mulder H. A., Calus M. P. L., (2012), Reliability of direct genomic values for animals with different relationships within and to the reference population.
, Journal of Dairy Science, 95: 389-400 (IF'2012=2,566; 5-years IF'2012=3,009)
Mucha S., Pszczola M., Strabel T., Wolc A., Paczynska P., Szydlowski M., (2011), Comparison of analyses of the QTLMAS XIV common dataset. II: QTL analysis.
, BMC Proceedings 2011, 5(Suppl 3): S2
Pszczola M., Strabel T., Wolc A., Mucha S., Szydlowski M.
, (2011), Comparison of analyses of the QTLMAS XIV common dataset. I: genomic selection.
, BMC Proceedings 2011
, 5(Suppl 3): S1
Pszczola M., Mulder H. A., Calus M. P. L.
, (2011), Effect of enlarging the reference population with (un)genotyped animals on the accuracy of genomic selection in dairy cattle.
, Journal of Dairy Science
, 94: 431-441 (IF'2011=2.564)
Pszczola M., I. Aguilar, and I. Misztal
, (2009), Short communication: Trends for monthly changes in days open in Holsteins
, Journal of Dairy Science
, 29: 4689-4696 (IF'2009=2,463)
papers on conference
Pszczola M., Mucha S., Strabel T., Sell-Kubiak. E., (2018), Genetic architecture of methane emission from dairy cows
, Proceedings of the 11th World Congress on Genetics Applied in Livestock Production (WCGALP), Auckland, New Zealand,
de Haas Y., Garnsworthy P.C., Kuhla B., Negussie E., Pszczola M., Wall E., Lassen J., (2016), Genetic control of greenhouse gas emissions
, Advances in Animal Biosciences, 7(2): 196-199.
Pszczola M., Strabel T., Calus M.P.L., (2014), Size of required reference population updates to achieve constant genomic prediction accuracy across generations.
, 10th World Congress of Genetics Applied to Livestock Production, August 12-22 2014, Vancouver, BC, Canada., Proceedings: 057.
Pszczola M., Strabel T., Mulder H.A., Calus M. P. L.
, (2011), Design of the reference population affects the reliability of genomic selection.
, Book of Abstracts of the 62nd Annual Meeting of the European Federation of Animal Science
, 17: 8
CalusM. P. L. , de Haas Y., Pszczola M., Veerkamp R. F., (2011), Predicted response of genomic selection for new traits using combined cow and bull reference populations.
, Proceedings of the 2011 Interbull Meeting August 26-28, 2010 Stavanger, Norway, 43: 1-5
Pszczola M., Calus M., Mulder H.
, (2010), The accuracy of genomic selection using (un)genotyped animals to enlarge the reference population.
, 9th World Congress on Genetics Applied to Livestock Production. Leipzig, Germany, August 1-6, 2010
, Abstracts: 154 (0238)
review articles
de Haas Y., Pszczola M., Soyeurt H., Wall E., Lassen J.
, (2017), Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying
, Journal of Dairy Science
, 100: 855-870. (IF'2016=2.474; 5-years IF'2016=2.855).
popular science publications
Krencik D., Pszczola M., Stadnicka K., Szwaczkowski T., (2022), Zjazd Europejskiej Federacji Zootechnicznej (EAAP) – 2021.
, Przegl?d Hodowlany, 3: 24-28.
Pszczola M., Strabel T., (2016), Metan - ekologia czy ekonomia?
, TopAgrar, 10: 18-20.
books
Pszczola M., (2021), Uzytkowanie byd?a a efekt cieplarniany
, Srodowiskowe i spoleczno-ekonomiczne uwarunkowania zrownowazonego chowu bydla (pod redakcja Joanny Makulskiej i Krzysztofa Adamczyka), Wydawnictwo UR w Krakowie, str. 55-69, ISBN 978-83-66602-09-0
Jonker A., Difford G.F., Garnsworthy P.C., Negussie E., Pszczola M., Román-Ponce S.I., Waghorn G.C., (2020), ‘Sniffer’ methane measurement systems to determine methane concentrations in air emitted by cows, W: Guideline for estimating methane emissions from individual ruminants using: GreenFeed, ‘sniffers’, hand-held laser detector and portable accumulation cha
, Ministry for Primary Industries, New Zealand., ISBN No: 978-1-99-004336-9, str. 27-40
abstracts
Lechniak-Cieslak D., Poplawski R., Cieslak A., Szkudelska K., Pszczola M., Murawski M., Fabian D., Nowak B., Sidoruk P., (2024), Effect of Unsaturated N-3 Fatty Acids From The Camelina Sativa L Cake on Fatty Acid and Adipokine Contents in The Serum of HF Heifers
, Society for Study of Reproduction (SSR) 57th annual meeting, Dublin (Ireland) July 15-19th 2024
Pszczola M., (2022), Mozliwosci ograniczenia ilosci metanu emitowanego przez krowy mleczne
, XVI Forum Zootechniczno-Weterynaryjne "Zmiany klimatyczne a nowe tendencje w hodowli i chowie zwierzat",
Pszczola M., (2022), Methane emissions: cows or microbiome genetics
, VI Polski Kongres Genetyki : Krakow, 27-30 czerwca 2022,
Wozniak J., Loba W., Iskrzak P., Pszczola M., Wojtczak J., Switonski M., Nowacka-Woszuk J., (2021), Markery genetyczne zwiazane z predyspozycja swin do powstawania przepuklin pepkowych.
, XVI Kongres Polskiego Towarzystwa Nauk Weterynaryjnych, 26-27 listopada 2021, Warszawa, Materialy Konferencyjne, 296.
Pszczola M., Mikula R., Rzewuska K., Mucha S., Nowak W., Strabel T., (2020), Is rumination time a predictor of methane emission of dairy cows?
, EAAP – 71st Annual Meeting, Virtual Meeting 2020, Book of Abstracts: 377,
Sypniewski M., Strabel T., Pszczola M., (2019), Genome-wide association study for methane concentration emitted by dairy cows
, 70th Annual Meeting of the European Federation of Animal Science, Ghent, Belgium, 26 - 30 Aug, Book of Abstracts:, 142
Pszczola M., Knol E.F., Mulder H.A., and Sell-Kubiak E., (2019), Veryfying the existence of second litter syndrome in pigs
, 70th Annual Meeting of the European Federation of Animal Science, Ghent, Belgium, 26 - 30 Aug, Book of Abstracts:, 256
Negussie E., González Recio O., de Haas Y., Gengler N., Soyeurt H., Peiren N., Pszczola M., Garnsworthy P., Battagin M., Bayat A., Lassen J., Yan T., Boland T., Kuhla B., Strabel T., Schwarm A., Vanlierde A., Biscarini F., (2019), Machine learning ensemble algorithms in predictive analytics of dairy cattle methane emission using imputed versus non-imputed datasets
, Proceedings of the 7th GGAA – Greenhouse Gas and Animal Agriculture Conference, 4-10 August, Foz do Iguassu, Brazil, 135:40
Sypniewski M., Pszczola M., Strabel T., Cie?lak A. and Schumacher-Strabel M., (2018), Validation of methane measurements in dairy cows obtained from two non-invasive infrared analysers
, 69th Annual Meeting of the European Federation of Animal Science, Dubrovnik, Croatia, 27 - 31 Aug, Book of Abstracts: 453
Pszczola M., Calus M.P.L. and Strabel T., (2018), Genetic correlations between methane production and traits from Polish national evaluation
, 69th Annual Meeting of the European Federation of Animal Science, Dubrovnik, Croatia, 27 - 31 Aug, Book of Abstracts: 185
Pszczola M., Rzewuska K., Mucha S., Strabel T., (2017), Heritability of methane emission from dairy cows measured in production environment over long time period
, 68th Annual Meeting of the European Federation of Animal Science Tallinn Estonia, 28 Aug – 1 Sept 2017, Book of Abstracts: 90
Sorg D., Difford G., Mühlbach S., Kuhla B., Swalve H., Lassen J., Strabel T., Pszczola M., (2017), Co-recording with the Laser Methane Detector: method comparisons towards joint genetic evaluations
, METHAGENE Annual Meeting, Caserta, Italy, 11-13 October 2017,
Pszczola M., (2017), Methane emission data handling
, METHAGENE Annual Meeting, Wageningen, Netherlands, 7-9 October 2015,
Pszczola M., (2017), Genetyka a ?rodowisko
, XXIII Regionalna Wystawa Zwierz?t Hodowlanych w Sielinku., 3 czerwca 2017,
Pszczola M., Rzewuska K., Strabel T., (2016), Nongenetic factors affecting methane emissions from dairy cattle
, 67th Annual Meeting of the European Federation of Animal Science Belfast UK, 29 Aug – 2 Sept 2016., Book of Abstracts: 329.
Pszczola M., Rzewuska K., Strabel T., (2016), Genetic analyses of methane emissions from dairy cattle
, V Polski Kongres Genetyki, ?ód? 19-22.09.2016, Streszczenia: 112.
Pszczola M., Szalanski M., Strabel T., (2015), Methane Emission collected on Polish commercial dairy farm
, 66th Annual Meeting of the European Federation of Animal Science Warsaw Poland, 31 Aug – 4 Sept 2015, Book of Abstracts: 130.
Pszczola M., (2015), Current status of genomic selection in Polish dairy cattle breeding
, 66th Annual Meeting of the European Federation of Animal Science Warsaw Poland, 31 Aug – 4 Sept 2015, Book of Abstracts: 548.
Pszczola M., Strabel T., Veerkamp R.F., Mulder H.A., Arendonk J.A.M. van, Calus M.P.L. , (2013), Required increase in training set to keep accuracy of genomic selection constant across generations.
, 64th Annual Meeting of the European Federation of Animal Science, Nantes, Francja 26-30 sierpnia 2013, Streszczenia: s.605.
Pszczola M., Veerkamp R.F., de Haas Y., Wall E., Strabel T., Calus M.P.L., (2013), Cechy wska?nikowe zwi?kszaj? dok?adno?? oceny cech trudnomierzalnych w selekcji genomowej.
, IV Polski Kongres Genetyki, Pozna?, 10 - 13 wrze?nia 2013.,
Pszczola M., Veerkamp R.F., Haas Y. de, Strabel T., Calus M.P.L., (2013), Genomic selection for scarcely recorded environmentally important traits can be improved using predictor traits.
, Greenhouse Gases & Animal Agriculture (GGAA) Conference, 23-26 czerwca 2013r., Dublin, Irlandia.,
Pszczola M.,Strabel T., and Calus M. P. L., (2012), Ways to increase accuracy of genomic breeding values when the reference population size is restricted.
, Book of Abstracts of the XXV International Conference Genetic Days, 15-16
Calus M.P.L., De Haas Y., Pszczola M., Veerkamp R.F., (2012), Genomic selection for new traits: optimal prediction and reference population design.
, Book of Abstracts of the 63rd Annual Meeting of the European Federation of Animal Science, 84
Pszczola M., Strabel T., van Arendonk J. A. M., Calus M.P.L
, (2012), Reliability of genomic breeding values at different reference population’s designs when some or all animals are genotyped.
, Journal of Animal Science
, 90, Suppl. 3: 521
Pszczola M., Wolc A., Mucha S., Szyd?owski M., Wietrzykowski M.A., Borowska A., Strabel T.,
, (2011), Estimation of breeding values and detection of QTL in QTL-MAS 2011 dataset using GBLUP and Bayesian approaches.
, 15th QTL-MAS Workshop, May 19-20, 2011, Rennes, France, 21
Pszczola M., I. Aguilar, and I. Misztal
, (2009), Trends for monthly changes in days open in Holsteins.
, Journal of Animal Science
, 87, E-Suppl. 2: 123